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Abstract Bilevel programming problems are hierarchical optimization problems where in
the upper level problem a function is minimized subject to the graph of the solution set
mapping of the lower level problem. In this paper necessary optimality conditions for such
problems are derived using the notion of a convexificator by Luc and Jeyakumar. Convexi-
ficators are subsets of many other generalized derivatives. Hence, our optimality conditions
are stronger than those using e.g., the generalized derivative due to Clarke or Michel-Penot.
Using a certain regularity condition Karush-Kuhn-Tucker conditions are obtained.
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1 Introduction

The bilevel programming problem (P) considered in this paper is a sequence of two
optimization problems in which the feasible region of the upper-level problem is determined
implicitly by the solution set of the lower-level problem. It is given as problem (P):

(P) :
{

Minimize f (x, y)

subject to : F(x, y) ∩ (−R
p
+
) �= ∅, y ∈ S (x) ,
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where, for each x ∈ R
n, S (x) is the solution set of the following parametric optimization

problem (the lower level problem){
Minimize

y
g (x, y)

subject to : G(x, y) ∩ (−R
q
+
) �= ∅,

where f, g : R
n1 × R

n2 −→ R are continuous functions, G : R
n1 × R

n2 ⇒ R
q and

F : R
n1 × R

n2 ⇒ R
p are given set-valued mappings; n1 ≥ 1 and n2 ≥ 1 are integers. A

pair (x, y) is said to be a local optimal solution of (P) if it is a local optimal solution to the
following problem:

min
(x,y)∈S

f (x, y)

where

S = {
(x, y) ∈ R

n1 × R
n2 : F(x, y) ∩ (−R

p
+
) �= ∅ and y ∈ S (x)

}
.

Note that we use the optimistic approach in bilevel programming here.
A lot of research has been carried out in bilevel optimization problems [4,7,13,21,37,

40,41,46,47,49], see also the monograph [14] and the annotated bibliography [15]. Ye and
Zhu [47] give optimality conditions without convexity assumption on the lower level pro-
blem and without the assumption that the solution set S (x) is a singleton. Under semi-
Lipschitz property, Zhang [49] extends the classical approach to allow nonsmooth problem
data; he derives existence and optimality conditions for problems using the coderivative due to
Mordukhovich applied to the graph of the solution multifunction to the lower-level problem.
Ye [48] first reformulates the bilevel programming problem as a one-level one and then uses
a generalized derivative to derive necessary optimality conditions.

Due to the formulation of the constraints and the use of the solution set mapping of the
lower level programming problem in the constraints of the upper level one, problem (P) is a
special type of a set-valued optimization problem. Generally speaking set-valued optimiza-
tion means set-valued analysis and its application to optimization, and it is an extension of
continuous optimization to the set-valued case. In this research area one investigates optimiza-
tion problems with constraints and/or an objective function described by set-valued maps, or
investigations in set-valued analysis are applied to standard optimization problems. In the last
decade there has been an increasing interest in set-valued optimization [20,24,28–30,32,33].
General optimization problems with set-valued constraints or a set-valued objective function
are closely related to problems in stochastic programming [34], interval programming [6],
vector optimization [23] and optimal control [8]. If the values of a given function vary in a
specified region, this fact could be described by using a membership function in the theory
of fuzzy sets or using information on the distribution of the function values. Optimal control
problems with differential inclusions belong to this class of set-valued optimization problems
as well.

It is our aim to develop sharp necessary optimality conditions for problem (P). For this we
need a generalized derivative of continuous functions. In recent years, a great deal of research
in nonsmooth analysis has focused on the development of generalized subdifferentials that
provide sharp extremality conditions and good calculus rules for nonsmooth functions [8,
10,12,39,42,45]. Very recently, as an extension of the notion of subdifferentials, the idea
of convexificators has been used to extend, unify, and sharpen various results in nonsmooth
analysis and optimization [12,25,26]. In Ref. [27], Jeyakumar and Luc gave a revised version
of convexificators by introducing the notion of a convexificator which is a closed set but is not
necessarily bounded or convex. Such a new notion will allow applications of convexificators
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to the above bilevel optimization problem under continuous data. For a locally Lipschitz
function, most known subdifferentials such as the subdifferentials of Clarke [8], Michel-Penot
[35,36], Ioffe-Mordukhovich [38] and Treiman [45] are convexificators. For more details,
see [27] and the references therein. Moreover, for a continuous function, the symmetric
subdifferential is a convexificator (see Proposition 1).

Our approach consists of using a support function [1,2,17,18,44] for the study of necessary
optimality conditions for bilevel optimization problems. In [17], Dien gave a characterization
of a set-valued mapping by its support function. Applying the support function, the bilevel
programming problem is transformed into an equivalent problem for which, by use of the
convexificator, necessary optimality conditions can be derived. Throughout, the data are
assumed to be continuous but not necessarily locally Lipschitz. Therefore, the result we
establish by means of convexificators is not only valid for locally Lipschitz optimization
problems. Convexificators are subsets of many other generalized derivatives. Hence, our
optimality conditions are stronger than those using e.g., the generalized derivative due to
Clarke or Michel-Penot.

If additionally a certain appropriate regularity condition is satisfied we are able to detect
necessary optimality conditions in terms of Karush-Kuhn-Tucker multipliers. Some examples
that illustrate the usefulness of convexificators are also given.

The rest of the paper is written as follows: Section 2 contains basic definitions and preli-
minary results. Section 3 is devoted to the optimality conditions.

2 Preliminaries

Let f : R
p → R∪ {+∞} be an extended real valued function. The expressions

f −
d (x, v) : = lim inf

t↘0
[ f (x + tv) − f (x)] /t,

f +
d (x, v) : = lim sup

t↘0
[ f (x + tv) − f (x)] /t

signify, respectively, the lower and upper Dini directional derivatives of f at x in the direction
of v.

Definition 1 [27] The function f : R
p → R∪ {+∞} is said to have a convexificator ∂∗ f (x)

at x if ∂∗ f (x) ⊂ R
p is a closed set and, for each v ∈ R

p,

f −
d (x, v) ≤ sup

x∗∈∂∗ f (x)

〈
x∗, v

〉
and f +

d (x, v) ≥ inf
x∗∈∂∗ f (x)

〈
x∗, v

〉
.

Note that convexificators are not necessarily compact or convex [12]. These relaxations
allow applications to a large class of nonsmooth continuous functions.

The Clarke generalized subdifferential [8] ∂c f (x) of f at x defined by

∂c f (x) :=
{

x∗ ∈ R
p : lim sup

u→x, t↘0

f (u + tv) − f (u)

t
≥ 〈

x∗, v
〉 ∀ v ∈ R

p

}

is a convexificator of f at x when f is locally Lipschitz. However, the convex hull of a
convexificator of a locally Lipschitz function may be strictly contained in the Clarke subdif-
ferential.

To progress, we need the following definition.
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Definition 2 [11] A set valued mapping F : R
p ⇒ R

q is upper semicontinuous (u.s.c.) at
x, if for each ε > 0, there exists δ > 0 such that, for each x ′ ∈ x + δBRp , we have

F
(
x ′) ⊂ F (x) + εBRq ,

where BRp and BRq are the closed unit balls in R
p and R

q respectively.

An example of a convexificator for a function which is not locally Lipschitz continuous
is given as follows.

Definition 3 [39] Let f : R
p → R := [−∞,+∞] be an extended real valued function and

x ∈dom( f ). The symmetric subdifferential of f at x is defined by

∂0 f (x) := ∂ f (x) ∪ [−∂(− f ) (x)]

where ∂ f (x) := lim sup

x
f→x, ε↘0

∂̂ε f (x) and ∂̂ε f (x) is the ε− Fréchet subdifferential of f at x

defined by

∂̂ε f (x) :=
{

x∗ ∈ R
p : lim inf

u→x

f (u) − f (x) − 〈x∗, u − x〉
‖u − x‖ ≥ −ε

}
, ε ≥ 0.

Here, x
f→ x is an abbreviation of x → x and f (x) → f (x) . For more details see [38,39].

Note that sufficient conditions for upper semicontinuity of ∂0 f (.) can be found in [22]
and [31].

Proposition 1 Let f : R
p → R := [−∞,+∞] be continuous and x ∈ dom ( f ) . Suppose

that ∂0 f (x) is closed and that ∂0 f (.) is upper semicontinuous at x . Then ∂0 f (x) is a
convexificator of f at x .

Proof Let ε > 0. By the upper semicontinuity of ∂0 f (.), there exists δ > 0 such that

∂0 f (x) ⊂ ∂0 f (x) + εBRq ,

for all x ∈ x + δBRp .

Using Theorem 2.3 of [26] (the mean value theorem), there exists c ∈ ]x, x[ such that

f (x) − f (x) ∈ ∂0 f (c) (x − x) ⊂ ∂0 f (x) (x − x) + ε ‖x − x‖ BR.

Now, let v ∈ R
p. Since BR is compact,

f −
d (x, v) ∈ ∂0 f (x) (v) + ε ‖v‖ BR and f +

d (x, v) ∈ ∂0 f (x) (v) + ε ‖v‖ BR.

Consequently, there exist x∗
1 , x∗

2 ∈ ∂0 f (x) and b1, b2 ∈ BR such that

f −
d (x, v) = 〈

x∗
1 , v

〉 + ε ‖v‖ b1 and f +
d (x, v) = 〈

x∗
2 , v

〉 + ε ‖v‖ b2.

Then,

f −
d (x, v) ≤ sup

x∗∈∂0 f (x)

〈
x∗, v

〉 + ε ‖v‖ and f +
d (x, v) ≥ inf

x∗∈∂0 f (x)

〈
x∗, v

〉 − ε ‖v‖ .

Letting ε → 0, one gets

f −
d (x, v) ≤ sup

x∗∈∂0 f (x)

〈
x∗, v

〉
and f +

d (x, v) ≥ inf
x∗∈∂0 f (x)

〈
x∗, v

〉
.

The proof is finished. ��
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Now, we recall the chain rule for composite functions in terms of convexificators establi-
shed by Jeyakumar and Luc in [27].

Proposition 2 [27] Let f = ( f1, . . . , fn) be a continuous function from R
p to R

n, and g
be a continuous function from R

n to R. Suppose that, for each i = 1, 2, . . . , n, fi admits a
bounded convexificator ∂∗ fi (x) and that g admits a bounded convexificator ∂∗g ( f (x)) at
f (x) . For each i = 1, . . . , n, if ∂∗ fi is u.s.c. at x and ∂∗g is u.s.c. at f (x) , then the set

∂∗ (g ◦ f ) (x) :=
{

n∑
i=1

ai ∂∗ fi (x) : (a1, . . . , an) ∈ ∂∗g ( f (x))

}
is a convexificator of the

function g ◦ f at x .

Since the convex hull of a convexificator of a locally Lipschitz function may be strictly
contained in the Clarke subdifferential, Corollary 1 is an extension of Proposition 2.3.12 [8].

Corollary 1 Let f = ( f1, . . . , fn) be a continuous function from R
p to R

n . Suppose that
for i = 1, 2, . . . , n, the function fi admits a bounded convexificator ∂∗ fi (x) at x . Let

h (x) = max { fi (x) : i = 1, 2, . . . , n}

and I (x) = {i : fi (x) = h (x)}. Then co

{ ⋃
i∈I (x)

∂∗ fi (x)

}
is a convexificator of h at x,

where, “co” denotes the convex hull.

The following result is a variant of Theorem 2.8.2 [8]. See also [9,44].

Corollary 2 Let T be a subset of R
p, x ∈ R

p, t ∈ T, ft : R
p → R and

h (x) = sup
t∈T

{ ft (x)} and J (x) = {t ∈ T : ft (x) = h (x)} .

Suppose that there exists a neighborhood U of x in R
p such that for each t ∈ T, the function

ft is finite on U and admits a bounded convexificator on U. If in addition t �−→ ft is upper
semicontinuous then, clco {∂∗ ft (x) : t ∈ J (x)} is a convexificator of h at x .

Proof It suffices to repeat (with very slight modification ) the argument of the first part of
the proof of Theorem 2.8.2 in Clarke [8]. ��

Let H : R
p ⇒ R

q be a set-valued mapping. For every y∗ ∈ R
q , the support function of

H at x is defined by

CH
(
y∗, x

) := sup
y∈H(x)

< y∗, y >,

where 〈., .〉 is the dual pairs.
Suppose that for all x ∈ R

p, H (x) is a non empty, closed and convex set. The distance
function of H to y ∈ R

q ,

d (y, H (x)) = inf {‖y − z‖ : z ∈ H (x)}
is related to the support function of H by the relation

d (y, H (x)) = max
y∗∈Y ∗

H ∩Bq

{〈
y∗, y

〉 − CH
(
y∗, x

)}
,

where Y ∗
H denotes the barrier cone of H defined by

Y ∗
H :=

{
y∗ ∈ R

q : sup
y∈H(x)

< y∗, y > < +∞
}

.
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If d (y, H (x)) > 0 then there is a unique y∗ ∈ Y ∗
H ∩ BRq satisfying ‖y∗‖ = 1 and

d (y, H (x)) = 〈y∗, y〉 − CH (y∗, x) , see [17] and [44].
Using Corollary 2, one can deduce the following result which is an extension of Proposition

2.2 [17].

Corollary 3 Suppose that there exists a neighborhood U of x such that for each x ∈ U and
y∗ ∈ Y ∗

H ∩ BRq , the support function CH (y∗, .) is continuous on U and admits a bounded
convexificator ∂∗CH (y∗, .) (x) := ∂∗

x CH (y∗, x) . Then, for all x ∈ X and y ∈ Y, the
distance function d (y, H (x)) admits

cl co
⋃

y∗∈J (x,y)

{−∂∗
x CH

(
y∗, x

) × {
y∗}}

as a convexificator at (x, y) . Here,

J (x, y) = {
y∗ ∈ Y ∗

H : ∥∥y∗∥∥ ≤ 1 and d (y, H (x)) = 〈
y∗, y

〉 − CH
(
y∗, x

)}
.

If, in addition, d (y, H (x)) > 0, then J (x, y) consists of only one single element y∗ with
‖y∗‖ = 1 and the symbol “co” can be deleted.

In what follows, the set valued mappings F and G are assumed to have the following
property (cl-property)

(i) If x∗
n ∈ ∂∗CF

(
y∗

n , ·) (xn) where x∗
n → x∗, y∗

n → y∗ and xn → x, then x∗ ∈
∂∗CF (y∗, ·) (x) .

(ii) If x∗
n ∈ ∂∗CG

(
y∗

n , ·) (xn) where x∗
n → x∗, y∗

n → y∗ and xn → x, then x∗ ∈
∂∗CG (y∗, ·) (x) .

Remark 4 1. The above property was first introduced by Dien [17,18] for locally Lipschitz
set-valued mappings. He calls it the cl-property.
2. In some cases, the cl-property can be established without difficulty. See the following
example.
3. The cl-property can be seen as the sequentially u.s.c. of ∂∗CH (y∗, .) .

Example 1 Let y∗ ∈ B
+
Rq and F (x) = f (x) − B

+
Rq , where f : BRp → BRq is a locally

Lipschitz mapping.
Suppose that x∗

n ∈ ∂∗CF
(
y∗

n , ·) (xn) where x∗
n → x∗, y∗

n → y∗ and xn → x . Remarking
that CF

(
y∗

n , xn
) = 〈

y∗
n , f (xn)

〉
, one has x∗

n ∈ ∂∗ 〈
y∗

n , f
〉
(xn) . Then, x∗ ∈ ∂∗ 〈y∗, f 〉 (x) .

3 Optimality conditions

According to [15,47], (P) can be replaced by

(
P∗) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize
x,y

f (x, y)

subject to :
F(x, y) ∩ (−R

p
+
) �= ∅, G(x, y) ∩ (−R

q
+
) �= ∅,

g (x, y) − V (x) ≤ 0,

(x, y) ∈ R
n1 × R

n2 ,

where

V (x) := min
y

{
g (x, y) : G(x, y) ∩ (−R

q
+
) �= ∅, y ∈ R

n2
}
.
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Remark 5 Under the following hypotheses (H1) , (H2) and (H3), the optimization problem
(P) has at least one optimal solution.

(H1): f (., .) , g (., .) are continuous, F (., .) and G (., .) are continuous on R
n1 × R

n2;
(H2): V (.) is upper semicontinuous (u.s.c.) on R

n1;
(H3): The problem (P∗) has at least one feasible solution (i.e. the infimal value v∗ of the

function f (., .) on the feasible set of this problem is less than infinity), there exists
v∗ < c < ∞ such that

M :={(x, y) : G(x, y) ∩ (−R
q
+
) �= ∅, F(x, y) ∩ (−R

p
+
) �= ∅, f (x, y) ≤ c}

is not empty and bounded.

The following regularity assumption will be used to get Karush-Kuhn-Tucker multipliers.

Definition 4 (x, y) is said to be a regular point of (P) if z1 ∈ F (x, y) ∩ (−R
p
+
)
, z2 ∈

G (x, y) ∩ (−R
q
+
)
, y∗ = (µ∗, ν∗, γ ) , ‖y∗‖ = 1 and

CF
(
µ∗, (x, y)

) + CG
(
ν∗, (x, y)

) = 〈
µ∗, z1

〉 + 〈
ν∗, z2

〉
imply

0 /∈∂∗CF (µ∗, .) (x, y) + ∂∗CG
(
ν∗, .

)
(x, y) + γ ∂∗g (x, y) − γ

(
∂∗V (x)×{0}) ,

where

∂∗V (x)⊆co
{
∂∗g (., y) (x) ∀y : G(x, y) ∩ (−R

q
+
) �= ∅, g (x, y) = V (x)

}
. (1)

Theorem 6 Let (x, y) be a local optimal solution of (P) such that

(x, y) /∈ Arg min
{

f (x, y) : (x, y) ∈ R
n1 × R

n2
}
.

Suppose that there exists a neighborhood U of (x, y) such that the functions f and g
are continuous on U and admit bounded convexificators ∂∗ f (x, y) and ∂∗g (x, y) , the
set valued mappings Fand G have the cl-properties (i) and (i i) and satisfy assumptions
(H1) , (H2) , (H3) , and the support functions of F and G admit at the point (x, y) boun-
ded convexificators ∂∗CF (µ∗, .) (x, y) and ∂∗CG (υ∗, .) (x, y) . Also, assume that ∂∗ f,
∂∗g, ∂∗CF (µ∗, .) and ∂∗CG (υ∗, .) are upper semicontinuous at (x, y) .

Then, for all z1 ∈ F (x, y) ∩ (−R
p
+
)

and z2 ∈ G (x, y) ∩ (−R
q
+
)

there exist scalars
λ1, λ2 ≥ 0 and vectors t∗ = (µ∗, υ∗, γ ∗) ∈ R

p
+ × R

q
+ × R+ such that∥∥(

µ∗, υ∗, γ ∗)∥∥ = 1 and λ1 + λ2 = 1,

CF
(
µ∗, (x, y)

) = 〈
µ∗, z1

〉
and CG

(
υ∗, (x, y)

) = 〈
υ∗, z2

〉
, (2)

(0, 0) ∈ λ1 co∂∗ f (x, y)

−λ2
[
∂∗CF

(
µ∗, .

)
(x, y) + ∂∗CG

(
υ∗, .

)
(x, y)

]
−λ2 γ ∗ [

∂∗g (x, y) − (
∂∗V (x) × {0})] , (3)

where ∂∗V (x) satisfies (1).
If in addition to the above assumptions, the problem (P) is regular at (x, y) , one has

λ1 > 0.
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Proof The proof of this theorem consists of several steps.
Let (x, y) is be a local optimal solution to (P) , z1 ∈ F (x, y) ∩ (−R

p
+
)

and z2 ∈
G (x, y) ∩ (−R

q
+
)
. According to [15], it is also a local optimal solution of

(
P∗) :

⎧⎨
⎩

Minimize f (x, y)

subject to : H (x, y) ∩ (−Z+) �= ∅,

(x, y) ∈ R
n1 × R

n2 ,

where
Z := R

p+q+1 and H (x, y) := (F (x, y) , G (x, y) , g (x, y) − V (x)) .

First Step Let

�1 (x, y, z) := f (x, y) + δ−Z+ (z) − f (x, y) + 1

n
,

�2 (x, y, z) := d (z, H (x, y))

and

hn (x, y, z) := max (�1 (x, y, z) ,�2 (x, y, z)) .

Set z := (z1, z2, 0). Then we have

hn (x, y, z) ≤ 1

n
+ inf

(x,y,z)∈R
n1 ×R

n2 ×Z
hn (x, y, z) .

By using Ekeland’s Variational Principle [19], there exists a sequence (xn, yn, zn) ∈
R

n1 × R
n2 × Z such that zn := (z1n, z2n, z3n) and

⎧⎪⎨
⎪⎩

‖(xn, yn, zn) − (x, y, z)‖ ≤ 1√
n

hn (xn, yn, zn) ≤ hn (x, y, z) + 1√
n

‖(x, y, z) − (xn, yn, zn)‖ ,

for all (x, y, z) ∈ R
n1 × R

n2 × Z . Hence (xn, yn, zn) is a local minimum of hn (x, y, z) +
1√
n

‖(x, y, z) − (xn, yn, zn)‖ and we get

0 ∈ cl co ∂∗
(

hn + 1√
n

‖. − (xn, yn, zn)‖
)

(xn, yn, zn) .

Consequently,

0 ∈ cl co ∂∗hn (xn, yn, zn) + 1√
n

BR
n1+n2 ×Z .

In view of Corollary 1, it follows that

∂∗hn ⊂ co
{
∂∗�i : i ∈ I (xn, yn, zn)

}
,

where I (xn, yn, zn) := {i : hn (xn, yn, zn) = �i (xn, yn, zn)} .

Consequently, there exist λn,1, λn,2 ∈ [0, 1] such that λn,1 + λn,2 = 1 and

0 ∈ λn,1co∂∗�1 (xn, yn, zn) + λn,2co∂∗�2 (xn, yn, zn) + 1√
n

BR
n1+n2 ×Z (4)
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where

λn,1 = 0 if �1 (xn, yn, zn) < �2 (xn, yn, zn) ,

λn,2 = 0 if �2 (xn, yn, zn) < �1 (xn, yn, zn) ,

0 ≤ λn,1 ≤ 1, 0 ≤ λn,2 ≤ 1 if �1 (xn, yn, zn) = �2 (xn, yn, zn) .

Second Step We have max (�1 (xn, yn, zn) ,�2 (xn, yn, zn)) > 0, since otherwise{
d (zn, H (xn, yn)) = 0,

f (xn, yn) − f (x, y) + δ−Z+ (zn) + 1

n
= 0,

so that zn ∈ H (xn, yn) and f (xn, yn) − f (x, y) = −δ−Z+ (zn) − 1

n
. Since (x, y) is an

optimal solution of the problem (P), one has f (xn, yn) − f (x, y) ≥ 0, a contradiction.
Moreover, �2 (xn, yn, zn) > 0, since otherwise λn,2 = 0, λn,1 = 1 and 0 ∈ co∂∗

f (xn, yn) + 1√
n

BR
n1+n2 . Then, 0 ∈ co∂∗ f (x, y) , which contradicts the assumption.

From (4), and using Corollary 3, there exist t∗n = (
µ∗

n, υ∗
n , γn

) ∈ R
m1+ × R

m2+ × R+ such
that

∥∥t∗n
∥∥ = 1 and⎧⎪⎨

⎪⎩
0 ∈ λn,1 co∂∗ f (xn, yn) − λn,2 co∂∗CH

(
t∗n , .

)
(xn, yn) + 1√

n
BR

n1+n2 ×Z ,

0 ∈ λn,1 N−Z+ (zn) + λn,2 t∗n + 1√
n

BZ ,

d (zn, H (xn, yn)) = 〈
t∗n , zn

〉 − CH
(
t∗n , (xn, yn)

)
,

(5)

with

∂∗CH
(
t∗n , .

)
(xn, yn) = ∂∗CF

(
µ∗

n, .
)
(xn, yn)

+∂∗CG
(
υ∗

n , .
)
(xn, yn) + γn∂∗g (xn, yn) − γn

(
∂∗V (xn) × {0}) .

Taking a subsequence if necessary, we can assume that for n tending to +∞:
(λn,1) → λ1 ∈ [0, 1] , (λn,2) → λ2 ∈ [0, 1] , µ∗

n → µ∗ � 0, υ∗
n → υ∗ � 0, γ ∗

n → γ ∗ ≥
0, t∗n → t∗ = (µ∗, υ∗, γ ∗) ∈ R

m1+ × R
m2+ × R+ and ‖(µ∗, υ∗, γ ∗)‖ = 1.

Then, we get Eq. 3:

0 ∈ λ1 co∂∗ f (x, y) − λ2[∂∗CF
(
µ∗, .

)
(x, y) + ∂∗CG

(
υ∗, .

)
(x, y)

+γ ∗∂∗g (x, y) − γ ∗(∂∗V (x) × {0})].
Using Corollary 2, co {∂∗g (., y) (x) : y ∈ J (x)} can be taken as a convexificator of V at x .

We remind the reader that

J (x) = {
y ∈ R

n2 : G(x, y) ∩ (−R
q
+
) �= ∅ and g (x, y) = V (x)

}
.

Third Step At last we have to show Eq. 2:
On the one hand, since z ∈ H (x, y) , we have CH (t∗, (x, y)) ≥ 〈t∗, z〉 for each t∗ ∈

R
m1+ ×R

m2+ ×R+. That is, for all z1 ∈ F(x, y)∩ (−R
p
+
)

and z2 ∈ G(x, y)∩ (−R
q
+
)

we have

CF
(
µ∗, (x, y)

) + CG
(
υ∗, (x, y)

) + γ ∗g (x, y) − γ ∗V (x) ≥ 〈
µ∗, z1

〉 + 〈
υ∗, z2

〉
, (6)

for each t∗ = (µ∗, υ∗, γ ∗) � 0.

Since F (., .) and G (., .) are continuous, one have

CF
(
µ∗, (x, y)

) = lim inf
n→∞ CF

(
µ∗

n, (xn, yn)
)

(7)

= lim inf
n→∞

[〈
µ∗

n, z1n
〉 − d (z1n, F (xn, yn))

]
≤ 〈

µ∗, z1
〉
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and

CG
(
υ∗, (x, y)

) = lim inf
n→∞ CG

(
υ∗

n , (xn, yn)
)

(8)

= lim inf
n→∞

[〈
υ∗

n , z2n
〉 − d (z2n, G (xn, yn))

]
≤ 〈

µ∗, z2
〉
.

Using the sum of (7) and (8) together with (6) and the fact that

g (x, y) − V (x) = 0,

one can deduce

CF
(
µ∗, (x, y)

) = 〈
µ∗, z1

〉
and CG

(
υ∗, (x, y)

) = 〈
υ∗, z2

〉
. (9)

Under the regularity assumption of (P) at (x, y), one can prove that λ1 > 0. ��
With the following example, we illustrate the usefulness of our necessary optimality

conditions. This example show that optimality conditions using convexificators are stronger
and more general than those using the Clarke subdifferential.

Example 2 We consider the following bilevel optimization problem (P�){
Minimize

x,y
y

subject to : |x | + |y| = 0, y ∈ S(x),

where, for each x ∈ R, S (x) is the solution set of the following parametric optimization
problem (parameterized in x) {

Maximize
y

x

subject to : x + |y| ≤ 0.
(10)

This is a special case of the general type (P). The example problem is illustrated in Fig. 1.
Observing that (0, 0) is not a local minimum of (P�) , the usefulness of our Theorem becomes
clear when we remark that the optimality conditions using convexificators are not satisfied
and the optimality conditions using the Clarke subdifferential are satisfied.

On the one hand, using the Clarke generalized derivative, necessary optimality conditions
reduces to the existence of scalars λ0, λ1, λ2 ≥ 0 satisfying

(0, 0) ∈ λ0 (0,−1) + λ1R
2 + λ2co {(1,−1) , (1, 1)} .

Fig. 1 Illustration of Example 2:
The feasible set of the bilevel
programming problem is drawn
with thick lines. A level set of the
objective function of the
upper-level problem is also given.
The picture shows that the origin
is not a locally optimal solution
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On the other hand, using convexificators,

(0, 0) /∈ λ0 (0,−1) + λ1 {(1,−1) , (−1, 1)} + λ2co {(1,−1) , (1, 1)}
for all λ0, λ1, λ2 ≥ 0.

Remark 7 Problem (10) can be reformulated as a parametric linear programming problem.
Properties of such problems can be found e.g. in [5]. If the optimal solution of the lower
level problem is uniquely determined and directionally differentiable [43], the bilevel pro-
gramming problem can be transformed into an equivalent one-level problem and solved by
descent algorithms [16]. In this case, paper [15] describes necessary and sufficient optimality
conditions for the bilevel programming problem. Since the assumptions in [15] are very res-
trictive, the results developed here are better suited for bilevel programming problems than
those using parametric optimization. This concerns especially the uniqueness assumption for
an optimal solution in the lower-level problem which is not used here.

Remark 8 Optimality conditions established by means of convexificators remain valid for
locally Lipschitz optimization problems when the Clarke subdifferential, the Michel-Penot
subdifferential, the Ioffe-Mordukhovich subdifferential or the Treiman subdifferential is used.

4 Special cases

Consider the following bilevel optimization problem (P∗)

(P1) :
{

Minimize f (x, y)

subject to : F (x, y) ≤ 0, y ∈ S (x) ,

where, for each x ∈ X, S (x) is the solution set of the following parametric optimization
problem (parameterized in x) [5]

(P2) :
{

Minimize
y

g (x, y)

subject to : G (x, y) ≤ 0,

where f, g, F, G : R
n1 × R

n2 −→ R are given; n1 and n2 are integers with ni ≥ 1.

Using Theorem 6, it is easy to deduce necessary optimality conditions for the bilevel
optimization problem (P∗) , since for functions F, the condition F(x, y) ∩ (−R

p
+
) �= ∅ is

equivalent to F(x, y) ≤ 0.

Corollary 9 [3] Let (x, y) be a solution of (P) such that

(x, y) /∈ Arg min
{

f (x, y) : (x, y) ∈ R
n1 × R

n2
}
.

Suppose that the assumptions (H1), (H2), (H3) are satisfied and that there exists a neigh-
borhood U of (x, y) such that the functions F, f, g, G are continuous on U and admit
bounded convexificators ∂∗F(x, y), ∂∗ f (x, y), ∂∗g(x, y) and ∂∗G(x, y) at (x, y). Also,
suppose that ∂∗F, ∂∗ f, ∂∗g and ∂∗G are upper semicontinuous at (x, y).

Then, there exist scalars λ1, λ2, µ∗, υ∗, γ ∗ ≥ 0 such that

‖(µ∗, υ∗, γ ∗)‖ = 1, λ1 + λ2 = 1, µ∗F (x, y) = 0, υ∗G (x, y) = 0 and
(0, 0) ∈ λ1 co∂∗ f (x, y) − λ2µ

∗∂∗F (x, y) − λ2υ
∗∂∗G (x, y)

−λ2 γ ∗ [
∂∗g (x, y) − (∂∗V (x) × {0})] ,
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where {
∂∗V (x) ⊆ co {∂∗g (., y) (x) : y ∈ J (x)} ,

J (x) = {y ∈ R
n2 : G (x, y) ≤ 0 and g (x, y) = V (x)} .

If in addition to the above assumptions, the problem (P) is regular at (x, y), one has

λ1 > 0.

5 Conclusion

In this work, we used convexificators and the support function to feasible set mapping to
establish necessary optimality conditions for a set valued bilevel optimization problem with
inclusion constraints. We assumed that all data are continuous but not necessary Lipschitz. We
used an intermediate set-valued optimization problem together with an appropriate regularity
condition to detect necessary optimality conditions in terms of Karush-Kuhn-Tucker multi-
pliers. The approach used hier is more general than those using the Clarke subdifferential,
the Mordukhovich subdifferential and the symmetric subdifferential. Optimality conditions
using the above subdifferentials can be deduced from our result.

Acknowledgement Our sincere acknowledgements to the anonymous referees and the Associate editor
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foundation.
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